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ABSTRACT: We present the concept and practical design of
nonreciprocal optical nanodevices that do not require magnetic
materials or bias, but instead are based on a fully integrated
nanophotonic ring resonator spatiotemporally modulated to impart
angular momentum bias that, according to the Onsager−Casimir
principle, can break time-reversal symmetry. On the basis of this idea,
we discuss optimal designs for compact optical isolators exhibiting
arbitrarily large isolation and low transmission loss, achieved by properly
selecting the quality factor of the nanoring, the amount of angular
momentum bias, and the gaps between ring and channel/drop
waveguides. A practical implementation based on stepwise modulation and pin junctions is explored, showing strong
nonreciprocal response in a simple, integrated design. These findings can enable the realization of on-chip, fully integrable
nonreciprocal optical nanocomponents as a new paradigm in all-optical communication systems.
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The symmetry in wave transmission between two points in
space is a direct consequence of time-reversal symmetry,1

and, as such, it is a fundamental property in many physical
problems, including electromagnetic,2 acoustic,3 and thermody-
namic4 systems. In many practical instances this reciprocal
response needs to be broken, such as when a source has to be
isolated from the load or when a receiver and a transmitter are
connected to the same transmission channel, with their
interference being obviously unwanted. This need has become
particularly important in nanophotonics, due to the large
interest in realizing all-optical on-chip communication systems.
Nonreciprocal transmission in a linear system requires

biasing the system with a vector whose direction is reversed
under time reversal,1 like the magnetic field vector. To date,
nonreciprocity in optics has been indeed almost exclusively
obtained using magneto-optic effects, arising in certain
magnetic media, such as ferrites, when biased by a static
magnetic field.5 However, the lattice mismatch between ferrites
and semiconductors makes the integration of magneto-optical
components in nanophotonic systems very problematic.6

Furthermore, the weak nature of the magneto-optic effect in
optics results in very bulky devices, several orders of magnitude
larger than the wavelength.7,8 Resonances have been success-
fully exploited to reduce the device footprint, but relevant
designs are still difficult to integrate.9−11 Although a method for
integration of magneto-optic and semiconducting materials has
been recently proposed in ref 12, the drawbacks related to the
requirement of a static magnetic bias still hold. Plasmonic
structures, which are in principle integrable, can enhance
magneto-optical activity,13−15 however at the expense of higher
loss and without avoiding the need of an external bias.

The issues associated with magneto-optics have spurred
significant interest in obtaining magnetic-free nonreciprocal
response. Nonlinearities can break time-reversal symme-
try,16−20 but the operation of the resulting devices strongly
depends on the input field intensity, thus making them
unsuitable for applications involving small signals, as in
quantum information processing. Furthermore, nonlinearities
result in spurious harmonics that are usually undesirable. Linear
nonreciprocity can be achieved in spatiotemporally modulated
waveguides by appropriate electric6,21−24 or acoustic25 bias.
Although the bandwidth of such devices can be large, their
electrical size is usually significantly larger than the wavelength,
due to the weak nature of electro- and acousto-optic effects.
Opto-mechanical resonators can also exhibit linear non-
reciprocity,26,27 however usually over a narrow bandwidth,
again due to the weak nature of opto-mechanical effects.
Nonreciprocity has also been demonstrated in transistor-loaded
metamaterials,28,29 but these approaches are limited to sub-
terahertz waves where transistors are available.
Recently, a concept to produce large linear nonreciprocity for

electromagnetic waves at the subwavelength scale by biasing
with the angular-momentum vector has been theoretically
introduced in ref 30 based on a suitable form of spatiotemporal
modulation imparted by circulating signals. Here we show how
this general concept can be successfully employed to introduce
a new paradigm for nonreciprocal nanophotonic devices,
realizing magnetic-free, fully integrable, compact optical
isolators based on channel-drop filters with spatiotemporally
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modulated rings as their core element. Temporal coupled mode
theory (CMT) is used to analytically model the proposed
nanostructures, showing excellent agreement with finite-differ-
ence time-domain (FDTD) full-wave simulations. Our model
determines the optimal conditions for maximum isolation and
minimum transmission loss in terms of the available quality (Q-
) factor of the nanoring resonator and its coupling to feeding
monomodal waveguides. A simplified implementation of the
proposed nanoisolator by means of a stepwise modulation
profile, which may be readily implemented via carrier injection/
depletion in silicon (Si) pin junctions, is also presented, in
addition to a comparison with a recently proposed solution for
magnetless nonreciprocity, based on a different type of
spatiotemporal modulation.

■ RESULTS AND DISCUSSION
Consider the channel-drop filter of Figure 1a, consisting of a
ring resonator placed between two parallel waveguides. The
nanoring supports pairs of degenerate counter-propagating
states with azimuthal dependences φ±e i , where is an integer.
The th pair resonates when the circumference of the ring is
times the guided wavelength. Right- and left-handed states may
be excited by incident waves from ports 1 and 2, respectively,

due to the forward nature of the coupling between the
waveguides and the ring. When the excitation frequency
coincides with the ring resonance, a transmission dip occurs
between the ports of the channel waveguide. If τ = τc/2, where
τ is the total relaxation time of the ring, including thermal loss,
radiation loss, and coupling to the waveguides, and τc is the
relaxation time due to coupling to the channel waveguide, the
transmission dip between ports 1 and 2 is identically zero.31

Let us assume now that we can remove the degeneracy
between the |± ⟩ states, so that |+ ⟩ and |− ⟩ resonate at
different frequencies ω+ and ω− , respectively (ω ω<+ + in
Figure 1b). Then, T21 = 0 and T12 = 0 at ω+ and ω− ,
respectively, where Tij is the transmission coefficient from port j
to i. Selecting ω ω ωΔ = − >− + −BW , where −BW is the
bandwidth of the |− ⟩ resonance, T21 = 0 and T12 ≈ 1 at ω+ ,
thus realizing an almost perfect isolator from port 1 to 2, in
principle with infinite isolation, IS = 20 log10(T12/T21) → ∞,
and negligible transmission loss. Similarly, if ωΔ > +BW , T21 ≈
1 and T12 = 0 at ω− , realizing an almost perfect isolator from
port 2 to 1. For ω ωΔ ≪ the resonance bandwidth is not
affected by the lift of degeneracy, so that = =+ −BW BW BW ,
where ω=BW / is the resonance bandwidth of the

Figure 1. Optical isolator based on channel-drop filter. (a) Channel-drop filter consisting of a microring resonator between two parallel waveguides.
The ring supports pairs of right- and left-handed modes, excited by incident waves from ports 1 and 2, respectively. At the right-handed resonance
ω+ power entering from port 1 couples to port 4, creating a transmission zero at port 2, while at the left-handed resonance ω− power entering from
port 2 couples to port 3, creating a transmission zero at port 1. (b) Transmission between ports 1 and 2. In a conventional ring (gray dashed line),
ω ω ω= =+ − and the structure is reciprocal (T21 = T12). Application of an appropriate bias (solid lines) can remove the degeneracy between the
modes of opposite handedness and create nonreciprocity (T21 ≠ T12). At ω+ and ω− waves can propagate only from port 2 to 1 and from port 1 to
2, respectively.

Figure 2. Angular-momentum-induced nonreciprocity. (a) Effect of a spatiotemporal permittivity modulation Δε = Δεm cos(ωmt − Lmφ) on the
states of a ring resonator. The modulation generates the nonresonant states ω ω| − − ⟩L ,m m and ω ω|− + + ⟩L ,m m (orange crosses) out of the
resonant ones ω| ⟩, and ω|− ⟩, , respectively. For =L 2m and ω ω≪m , ω ω| − − ⟩L ,m m and ω ω|− + + ⟩L ,m m resonantly couple to

ω|− ⟩, and ω|+ ⟩, , giving rise to the hybrid states of panel b. (b) Frequency diagram of the ring states after a dynamic modulation with frequency
ωm ≠ 0 is applied. The |α⟩ and |β⟩ states of the modulated ring are hybridizations of the |± ⟩ states. The substates have different strengths and lie at
frequency levels separated by ωm, hence producing nonreciprocity.
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Figure 3. Transmission properties of a spatiotemporally modulated channel-drop filter. An ideal permittivity modulation in the form Δε = Δεm
cos(ωmt − Lmφ) is assumed. (a) Transmission between ports 1 and 2 as a function of the input frequency. Here the output frequency coincides with
the input frequency. An incident wave of frequency ω from port 1 (left inset) excites the right-handed substates at frequency ω, which subsequently
leak to ports 2 and 4. Due to the hybrid nature of the ring states, the left-handed substates are also excited at frequency ω − ωm and subsequently
leak to ports 1 and 3. On the contrary, an incident wave of frequency ω from port 2 (right inset) excites the left-handed substates at frequency ω,
which leak to ports 1 and 3, and the right-handed substates at frequency ω + ωm, which leak to ports 2 and 4. (b) Transmission from port 1 to 4 and
from port 2 to 3 versus the input frequency, which, like in panel a, coincides with the output frequency here. (c) Transmission from port 1 to 3 and
from port 2 to 4 versus output frequency at these ports. Contrary to panels a and b, the output frequency is now red-/blue-shifted by the quantity ωm
with respect to the input frequency for excitation from ports 1 and 2, respectively. (d) Field profile at fα (dotted line in panels a, b, and c) for
excitation from port 1. (e) The same as in panel d, but for excitation from port 2. The results in panels a−c were derived via CMT and FDTD
simulations. The results in panels d and e were derived via FDTD simulations. They all take into account of intermodulation products and frequency
mixing, as described above. The parameters of the structure are w = 0.2a, R = 0.88a, g1 = 0.3a, g2 = 0.33a, Δεm = 5 × 10−4εs, εs = 12, fm = 10−4c/a,
and Lm = 22, where a is an arbitrary reference length.
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degenerate modes and is the corresponding Q-factor. Then,
ωΔ > BW becomes

ω
ω

Δ > 1
(1)

which is the condition for obtaining maximum isolation with
minimum transmission loss.
The conventional way of removing the degeneracy between

|± ⟩ states is by loading the nanoring with a magneto-optical
material, inducing different guided wavelengths for opposite
propagation directions. However, as already mentioned,
magneto-optical devices are difficult to integrate in nano-
photonic systems because they involve bulky biasing magnets
and materials that are incompatible with semiconductor
technology. In ref 30 it was shown that an alternative way to
achieve a similar degeneracy lift is to apply an azimuthal
spatiotemporal modulation Δε = Δεm cos(ωmt − Lmφ) to the
material loading the nanoring, as illustrated in the inset of
Figure 2a. As discussed later, such an approach can be fully
implemented in Si-based technology, and, therefore, it is totally
compatible with modern integrated nanophotonic systems.
In ref 30 it was also shown that the optimal way to remove

the degeneracy between the |±1⟩ states is by choosing Lm = 2
and ωm small but nonzero, so that |±1⟩ resonantly couple to
each other and two new hybrid states are created, each of which
is a superposition of the |±1⟩ states, however now with
different frequencies. Here, we apply this result to an arbitrary
pair of states |± ⟩ by selecting Lm = 2 , so that |± ⟩ resonantly
couple to each other, as illustrated in Figure 2a, and the hybrid
states |α⟩ and |β⟩, depicted in Figure 2b, are generated. This
generalization is especially important for the problem at hand,
because of the necessity to excite a sufficiently large resonance
Q-factor in the nanoring to minimize the requirements on
modulation amplitude, as discussed in the following. Both |α⟩
and |β⟩ consist of dominant and secondary substates of
opposite handedness and frequencies separated by ωm. The
dominant substates of |α⟩ and |β⟩ are |+ ⟩ and |− ⟩ with
frequencies ω ω δω= −α /2 and ω ω δω= +β /2, respec-

tively, where δω ω ω κ ω= + −m
2 2

m
2

m and κm is the
coupling coefficient as given by eq 2 of ref 30. The maximum
separation between any two substates of opposite handedness,
which determines the strength of nonreciprocity, is shown in
re f 30 to be ω ω κΔ = / 3m and i t occurs for
ω ω κ= / 3m m . Then, eq 1 becomes

κ ≥ 3m (2)

which, for a given κm, i.e., for a given Δεm, determines the
minimum required Q-factor for observing strong nonreciprocity
with low transmission loss.
A particularly interesting case is the transmission between the

different ports of the proposed channel waveguide. Trans-
mission from port 1 to 2 is given by (see the Supporting
Information for details)

ω ω τ τ ω ω ω τ ω κ
ω ω τ ω ω ω τ ω κ
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and becomes zero when its numerator is zero, leading to

ω ω ω ω ω τ τ τ ω κ
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(4)

For high-Q resonances, as the case of interest here to keep the
requirement of modulation frequency and amplitude low, the
relaxation time is much larger than the resonance period
ω τ ≫ 1, and the first of eqs 4 is satisfied by ω = ωα or ω = ωβ

+ ωm. However, only ω = ωα can also satisfy the second of eqs
4, leading to

τ τ δω
ω

= +
⎛
⎝⎜

⎞
⎠⎟1d c

m (5)

where τd is the relaxation time due to coupling to the drop
waveguide. This equation is derived under the assumption that
thermal and radiation losses are negligible compared to loss due
to coupling to the channel/drop waveguides, a valid assumption
for high-order modes, leading to τ−1 = τc

−1 + τd
−1. Equation 5 is

the condition for T21 = 0 at ωα and hence infinite isolation from
port 1 to 2. Following a similar analysis for T12, it may be
shown that eq 5 is also the condition for T12 = 0 at ωβ and
hence infinite isolation from port 2 to 1. We note that the
temporal modulation inherently introduces additional frequen-
cies into the picture, which are fully taken into account in our
analysis. As sketched in the inset of Figure 3, the
intermodulation frequencies are routed towards specific ports,
as detailed in the caption of Figure 3 and below.
The material with the strongest known permittivity

modulation to date for nanophotonic applications is silicon,
with Δεm = 5 × 10−4εs, where εs = 12 is its permittivity.6,32,33

This value leads to κm = 2.5 × 10−4 and a required ≥ 7000,
according to eq 2. For a ring resonator with w = 0.2a and R =
0.88a, where a is an arbitrary reference length, such a Q-factor
can be achieved with = 11 and a minimum gap between the
nanoring and the waveguides of 0.3a. Selecting gc = 0.3a, gd
should be equal to 0.33a so that eq 5 is satisfied for Δω = ωm,
i.e., for the case of maximum separation between any two states
of opposite handedness.
Transmission between the ports of the proposed modulated

channel-drop filter was calculated via CMT and FDTD full-
wave simulations and is presented in Figure 3a−c. The
agreement between CMT and FDTD simulations is excellent,
apart from a slight frequency shift, attributed to the inherent
dispersion of the FDTD method.31 In perfect agreement with
our design, T21 ≈ 0 and T12 ≈ 1 at fα = ωα/(2π) (Figure 3a),
corresponding to an isolation from port 1 to 2 of more than 35
dB and a transmission loss of less than 1 dB. Similarly, T12 ≈ 0
and T21 ≈ 1 at fβ = ωβ/(2π), indicating an isolation from port 2
to 1 with the same properties as from port 1 to 2. Smaller
transmission dips for T21 and T12 also exist at fβ + fm and fα −
fm, respectively, due to coupling to the secondary |+ ⟩ and |− ⟩
substates of |α⟩ and |β⟩. As explained above, secondary
substates do not satisfy eq 5 and therefore cannot yield
transmission zeros. We reiterate that in this panel input and
output frequencies are the same, i.e., we do not observe
intermodulation products in the transmission from port 1 to 2,
or vice versa.
Apart from transmission between the ports of the channel

waveguide, it is also interesting to explore what happens to the
ports of the drop waveguide. The |+ ⟩ substates leak to ports 2
and 4, while the |− ⟩ substates leak to ports 1 and 3. For
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excitation from port 1 at frequency ω, the |+ ⟩ substates are
directly excited by the incident field at frequency ω, while the
|− ⟩ substates are indirectly excited at the different frequency ω
− ωm. Therefore, the frequencies of the signals delivered to
ports 3 and 4 are ω − ωm and ω, respectively, as illustrated in
the left inset of Figure 3a. The maxima of the signal at port 4
(T41 curve of Figure 3b) occur at fα and fβ + fm, when the
incident frequency coincides with the resonance frequency of
the |+ ⟩ substates. The maxima of the signal at port 3 (T31

curve of Figure 3c) are red-shifted by fm with respect to port 4,
due to the same red-shift of the |− ⟩ substate with respect to
the |+ ⟩ one. Similar arguments also hold for excitation from
port 2 and are graphically summarized in the insets of Figure 3a
and in the T32 and T42 curves of Figure 3b and c, respectively. It
is important to highlight that the output frequency in Figure 3c
is shifted with respect to the input frequency by the quantity
ωm.
The device operation can be further understood by

inspecting the electric field distribution plotted in Figure 3d
and e at frequency fα. For excitation from port 1 (Figure 3d),
the power transmitted to port 2 is negligible, while most of the
incident power is transmitted to port 4. Notice that not all of
the incident power is transmitted to port 4 because a portion
also couples to the |− ⟩ substate of |α⟩ and therefore flows into
port 3. However, this power is not visible in Figure 3d because
it occurs at a different frequency ( fα − fm) from the one
analyzed in Figure 3d. For excitation from port 2 (Figure 3e),
almost all of the incident power reaches port 1, as expected.
However, quite unexpectedly, a non-negligible amount of
power seems to get reflected back to port 2 and transmitted to
port 4. As mentioned above, outgoing signals at ports 2 and 4
are related to the |+ ⟩ substates, which cannot be excited at
frequency fα by an incident signal from port 2. The explanation
for this peculiar behavior resides on the broadband pulse
employed in the FDTD simulations, which excites the |− ⟩
substate and subsequently the |+ ⟩ substate of the |α⟩ state at
frequencies fα − fm and fα, respectively. Note that this issue
would not arise in a practical design, because the bandwidth of
transmitted signals will be smaller than the resonance
bandwidth of the device, to avoid pulse distortion. The reason
that such a pulse was not used in simulations is that it is several
orders longer than the carrier signal period, and, as a result, it
would lead to prohibitively long simulation times.
As explained before and illustrated in the insets of Figure 3a,

excitation from ports 1 and 2 with frequency ω results in
reflected signals with frequencies ω − ωm and ω + ωm,
respectively. It follows that for excitation of the structure with a
pulse of bandwidth BWs and center frequency ω, the
corresponding reflected signals will also be pulses with the
same bandwidth and center frequencies ω ± ωm. It is easy to
see that in order for these modulation byproducts to not
interfere with the original pulse, BWs should be smaller than
ωm, which could make the reader think that the available
bandwidth is limited by the modulation frequency. Never-
theless, under optimal operation, as described by eq 2,
ω > BWm , and, since <BW BWs in order to avoid pulse
distortion, the zero-overlap condition ωm > BWs is automati-
cally satisfied. In other words, the bandwidth of a properly
designed isolator is exclusively determined by the ring
resonance and not by the modulation frequency.
The strongest electro-optical modulation to date in Si is

achieved via carrier injection/depletion using suitably designed

pin junctions.32,33 In order to apply this technique to our
nanophotonic design, the assumption of a continuous
modulation needs to be approximated by a stepwise one,
with different steps corresponding to different junctions. It may
be a reasonable guess that at least four pin junctions per
modulation period 2π/Lm are necessary to comply with
Nyquist sampling criterion, resulting in 4Lm junctions for the
entire ring (88 junctions in the = 11 case), which is probably
prohibitive to implement in practice. However, as we show
next, this number may be drastically reduced to up to only
three junctions. To this end, we assume that the continuous
modulation profile is approximated with N steps:

∑ε ε ω φ
φ φ

φ
Δ = Δ −

−
Δ=

⎛
⎝⎜

⎞
⎠⎟t Lcos( ) rect

n

N

n
n

m
0

m m
(6)

where rect(x) is a zero-centered rectangular pulse with width
and height 1, Δφ = 2π/N is the step width, and φn = (n + 1/
2)Δφ − π is the center of the nth step. Applying the Poisson
summation formula to eq 6 (see Supporting Information for
details) yields

∑ε ε

ω φ

Δ = Δ −
+

× − +
=−∞

∞
− ⎛

⎝⎜
⎞
⎠⎟

L kN
N

t L kN

( 1) sinc

cos[ ( ) ]

k

k N
m

( 1) m

m m (7)

where sinc(x) = sin(πx)/(πx). Equation 7 shows that the
stepwise modulation of eq 6 is a superposition of an infinite
number of continuous modulation profiles with different
angular momenta. For ω ω≪m , only the one with

+ =L kN 2m can resonantly couple the |± ⟩ states and
induce nonreciprocity. Then, the equivalent modulation
amplitude is

ε εΔ = Δ ⎜ ⎟
⎛
⎝

⎞
⎠N

sinc
2

m
eq

m (8)

Δεmeq therefore decreases linearly with N, a reduction that can
be easily compensated by the exponential increase of Q-factor
with or gc,d. Attention should be paid to prevent N2 / from
coinciding with a zero of the sinc function. The minimum N for
which this condition is met is indeed N = 3.
Consider first the extreme case N = 3: for = 11, Δεmeq =

0.0376Δεm, yielding κm ≈ 10−5, which requires a Q-factor
around 200 000. Although Q-factors of this order have been
reported in the literature in Si-based nanophotonic resona-
tors,34 they may be hard to achieve in practice. The required
value of the Q-factor may be easily reduced by increasing N.
For example, increasing N from 3 to 9 brings the required Q-
factor from 200 000 down to 60 000. Further increasing N to
15 brings the Q-factor down to 35 000. Here, in order to show
that the proposed discretization scheme works even in the
extreme case N = 3, Figure 4 presents T21 and T12 for N = 3 and
Δεm = 5 × 10−3εs, as calculated via both CMT and FDTD
simulations. We used a larger value of Δεm here to bring the
required Q-factor down to 20 000, which allows keeping the
simulation time to a reasonable level. Both analytical and
simulated curves show that T21 ≈ 0, T12 ≈ 1 at frequency fα and
T12 ≈ 0, T21 ≈ 1 at fβ, as theoretically expected, demonstrating
the efficiency of the proposed scheme.
Finally, we compare the proposed spatiotemporally modu-

lated nanoring with the one theoretically discussed in the
seminal paper6 to realize magnetic-free optical isolation. First,
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we notice that the two functionalities are based on different
principles: nonreciprocity in ref 6 is the result of an asymmetric
mode conversion for opposite propagation directions in a
multimodal waveguide. The fundamental mode supported by
the nanoring is transformed into a higher-order mode for one
propagation direction (left to right in Figure 3 of ref 6), while
no conversion arises for the opposite direction (right to left in
Figure 3 of ref 6). Since the fundamental and first higher-order
modes are orthogonal across the waveguide cross-section, a
nonuniform modulation profile is required for this conversion to
happen. On the contrary, our approach is based on the lift of
degeneracy of counter-propagating modes with identical cross-
section profile, mimicking the case in which the ring was made
of a magnetically biased material, a result that is achieved with
an arguably easier-to-realize uniform modulation in the trans-
verse cross-section. The proposed approach also allows
minimizing the nanoring size and keeping the modulation
requirements to a minimum, as dictated by eq 2. In addition, in
the Supporting Information we prove that the proposed
solution extends the operational bandwidth of the non-
reciprocal response by over a factor of 4 compared to an
analogous nanoring operated as proposed in ref 6.

■ CONCLUSIONS
A novel class of magnetic-free, fully integrable, nonreciprocal
optical nanodevices relying on azimuthal spatiotemporal
modulation of the nanoring resonator of a channel-drop filter
has been introduced. Nonreciprocity follows from the removal
of the degeneracy between states of opposite handedness in the
modulated nanoring. By properly adjusting its resonance Q-
factor and the coupling to the channel and drop waveguides,
extremely high isolation with almost zero transmission loss can
be achieved. Compact design rules have been rigorously derived
for optimal designs, and a practical implementation by means of
a stepwise modulation scheme implemented with pin junctions
has been explored. The fact that angular-momentum biasing

allows keeping the modulation frequency of the nanoring
arbitrarily small significantly relaxes the minimum number of
required pin junctions, up to only 3. It is remarkable that, in
addition to realizing an isolator, the proposed structure can also
operate as a quasi-ideal circulator, since incident power from
ports 1, 2, and 4 is transmitted to ports 4, 1, and 3, respectively,
while incident power from port 3 is mainly transmitted to port
2 with a small portion leaking to port 4 (since the zero-
transmission condition is satisfied only from the side of the
channel waveguide). We believe that the proposed concept may
open exciting venues toward the full integration of non-
reciprocal components such as isolators, circulators, and
rotators in all-optical communication and nanophotonic
systems.
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■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on February 13, 2014, with an
error in equation 5 and one minor text error on page 4. The
corrected version was reposted on February 18, 2014.
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